# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (2*E*)-1-(4,4"-Difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)-3-(2,6difluorophenyl)prop-2-en-1-one

#### Hoong-Kun Fun,<sup>a</sup>\*‡ Tze Shyang Chia,<sup>a</sup> S. Samshuddin,<sup>b</sup> B. Narayana<sup>b</sup> and B. K. Sarojini<sup>c</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, <sup>b</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and <sup>c</sup>Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: hkfun@usm.my

Received 23 April 2012; accepted 23 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; *R* factor = 0.046; *wR* factor = 0.144; data-to-parameter ratio = 26.2.

In the title compound,  $C_{28}H_{18}F_4O_2$ , the central benzene ring makes dihedral angles of 44.27 (6), 56.33 (5) and 77.27 (6)° with the two adjacent fluorobenzene rings and terminal difluoro-substituted benzene ring, respectively. The dihedral angle between the fluorobenzene rings is 87.81 (6)°. The methoxy and prop-2-en-1-one groups are essentially coplanar with their attached benzene rings, as indicated by their C–  $O-C_{ar}-C_{ar}$  [-0.06 (15)°] and C–C– $C_{ar}-C_{ar}$  [4.5 (2)°] (ar = aromatic) torsion angles. In the crystal, molecules are linked by C–H···F and C–H···O hydrogen bonds into sheets lying parallel to the *ac* plane. The crystal structure also features C– H··· $\pi$  interactions.

#### **Related literature**

For related structures and background to terphenyl chalcones, see: Fun *et al.* (2011, 2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen *et al.* (1987).



 $\gamma = 85.293 \ (1)^{\circ}$ 

Mo  $K\alpha$  radiation

 $\mu = 0.11 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int} = 0.035$ 

Z = 2

 $V = 1125.10 (11) \text{ Å}^3$ 

 $0.25 \times 0.20 \times 0.11 \text{ mm}$ 

28220 measured reflections

8063 independent reflections

6097 reflections with  $I > 2\sigma(I)$ 

#### Experimental

Crystal data

 $\begin{array}{l} C_{28}H_{18}F_4O_2\\ M_r = 462.42\\ \text{Triclinic, } P\overline{1}\\ a = 8.9624 \ (5) \ \mathring{A}\\ b = 10.2127 \ (6) \ \mathring{A}\\ c = 13.3281 \ (7) \ \mathring{A}\\ \alpha = 67.780 \ (1)^\circ\\ \beta = 86.776 \ (1)^\circ \end{array}$ 

#### Data collection

```
Bruker APEX Duo CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
T_{min} = 0.974, T_{max} = 0.989
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 308 parameters $wR(F^2) = 0.144$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$ 8063 reflections $\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å,  $^{\circ}$ ).

Cg1 and Cg2 are the centroids of the C1-C6 and C7-C12 rings, respectively.

| $D - H \cdot \cdot \cdot A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C2-H2A\cdots F3^{i}$        | 0.93 | 2.46                    | 3.3655 (18)  | 164                                  |
| C8-H8A···F4 <sup>ii</sup>    | 0.93 | 2.45                    | 3.3726 (13)  | 170                                  |
| $C24 - H24A \cdots O2^{iii}$ | 0.93 | 2.57                    | 3.4371 (14)  | 155                                  |
| $C20-H20A\cdots Cg1^{iv}$    | 0.93 | 2.83                    | 3.5082 (14)  | 130                                  |
| $C27 - H27A \cdots Cg2^{v}$  | 0.93 | 2.68                    | 3.4068 (12)  | 136                                  |
| $C28-H28B\cdots Cg2^{vi}$    | 0.96 | 2.90                    | 3.7990 (15)  | 157                                  |

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 2, -z; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z; (v) -x, -y + 2, -z; (vi) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

<sup>‡</sup> Thomson Reuters ResearcherID: A-3561-2009.

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6753).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, 03327–03328.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 0163.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supplementary materials

Acta Cryst. (2012). E68, o1560-o1561 [doi:10.1107/S160053681201820X]

# (2*E*)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(2,6-difluoro-phenyl)prop-2-en-1-one

#### Hoong-Kun Fun, Tze Shyang Chia, S. Samshuddin, B. Narayana and B. K. Sarojini

#### Comment

In continuation of our work on synthesis of terphenyl chalcones (Fun *et al.*, 2011), the title compound is prepared and its crystal structure is reported. The starting material of the title compound was prepared from 4,4'-difluoro chalcone by several steps (Fun *et al.*, 2012).

In the title compound (Fig. 1), the central benzene ring (C7–C12) makes dihedral angles of 44.27 (6), 56.33 (5) and 77.27 (6)° with the two adjacent fluoro-substituted benzene rings (C1–C6 & C22–C27) and terminal difluoro-substituted benzene ring (C16–C21), respectively. The dihedral angle between the fluoro-substituted benzene rings is 87.81 (6)°. The methoxy (O1/C28) and prop-2-en-1-one (O2/C13–C15) groups are essentially coplanar with C7–C12 and C16–C21 rings, respectively as indicated by their torsion angles C28–O1–C11–C12 = -0.06 (15)° and C14–C15–C16–C17 = 4.5 (2)°. Bond lengths and angles are comparable to those in related structures (Fun *et al.*, 2011, 2012).

In the crystal (Fig. 2), molecules are linked by C2—H2A···F3, C8—H8A···F4 and C24—H24A···O2 hydrogen bonds (Table 1) into two dimensional networks parallel to *ac* plane. The crystal also features C—H··· $\pi$  interactions (Table 1), involving *Cg*1 and *Cg*2 which are the centroids of C1—C6 and C7—C12 rings, respectively.

#### Experimental

To a mixture of

1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)ethanone (0.338 g, 0.001 mol) and 2,6-difluorobenzaldehyde (0.142 g, 0.001 mol) in 30 ml e thanol, 0.5 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 h. The precipitate formed was collected by filtration and then purified by recrystallization from ethanol. Colourless blocks were grown from acetone solution by slow evaporation and the yield of the compound was 72% (m.p.: 405 K).

#### Refinement

All H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined using a riding model with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ . A rotating group model was applied to the methyl group. Three outliers (4 - 5 1), (0 - 3 2) and (3 - 5 2) were omitted.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).



## Figure 1

The molecular structure of the title compound with 50% probability displacement ellipsoids.



## Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.

### (2*E*)- 1-(4,4"-Difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)-3- (2,6-difluorophenyl)prop-2-en-1-one

| Crystal data                        |                                                           |
|-------------------------------------|-----------------------------------------------------------|
| $C_{28}H_{18}F_4O_2$<br>M = 462.42  | $\gamma = 85.293 (1)^{\circ}$<br>$V = 1125 10 (11) Å^{3}$ |
| $\frac{M_r}{\text{Triclinic}, P_1}$ | Z = 2                                                     |
| Hall symbol: -P 1                   | F(000) = 476                                              |
| a = 8.9624 (5) Å                    | $D_{\rm x} = 1.365 {\rm ~Mg} {\rm ~m}^{-3}$               |
| b = 10.2127 (6) Å                   | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å     |
| c = 13.3281 (7)  Å                  | Cell parameters from 7563 reflections                     |
| $\alpha = 67.780 (1)^{\circ}$       | $\theta = 2.3 - 32.4^{\circ}$                             |
| $\beta = 86.776 (1)^{\circ}$        | $\mu = 0.11 \mathrm{~mm^{-1}}$                            |

#### T = 100 KBlock, colourless

Data collection

| Bruker APEX Duo CCD                      | 28220 measured reflections                                          |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 8063 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 6097 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.035$                                               |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 32.5^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$ |
| Absorption correction: multi-scan        | $h = -13 \rightarrow 13$                                            |
| (SADABS; Bruker, 2009)                   | $k = -15 \rightarrow 14$                                            |
| $T_{\min} = 0.974, \ T_{\max} = 0.989$   | $l = -20 \rightarrow 18$                                            |
| Refinement                               |                                                                     |
| Refinement on $F^2$                      | Secondary atom site location: differen                              |
| Least squares matrix: full               | mon                                                                 |

| Secondary atom site location: difference Fourier           |
|------------------------------------------------------------|
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0774P)^2 + 0.2553P]$          |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

 $0.25 \times 0.20 \times 0.11 \text{ mm}$ 

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ             | $U_{ m iso}*/U_{ m eq}$ |  |
|-----|--------------|--------------|---------------|-------------------------|--|
| F1  | 0.17366 (10) | 0.87097 (10) | -0.57879 (6)  | 0.03431 (19)            |  |
| F2  | 0.40523 (9)  | 0.37977 (9)  | 0.20352 (6)   | 0.03302 (19)            |  |
| F3  | 0.15771 (9)  | 0.45771 (9)  | 0.49909 (6)   | 0.03172 (19)            |  |
| F4  | 0.54429 (8)  | 0.99409 (9)  | 0.24888 (6)   | 0.02763 (17)            |  |
| 01  | -0.18938 (9) | 0.62125 (9)  | 0.08627 (7)   | 0.02127 (17)            |  |
| O2  | -0.12638 (9) | 0.79463 (9)  | 0.21502 (7)   | 0.02271 (17)            |  |
| C1  | 0.09479 (14) | 0.69493 (13) | -0.29224 (10) | 0.0227 (2)              |  |
| H1A | 0.0711       | 0.6060       | -0.2430       | 0.027*                  |  |
| C2  | 0.11646 (14) | 0.71665 (14) | -0.40139 (10) | 0.0261 (2)              |  |
| H2A | 0.1074       | 0.6437       | -0.4259       | 0.031*                  |  |
| C3  | 0.15174 (13) | 0.84918 (14) | -0.47200 (9)  | 0.0240 (2)              |  |
| C4  | 0.16684 (13) | 0.96077 (13) | -0.43948 (9)  | 0.0221 (2)              |  |
| H4A | 0.1912       | 1.0490       | -0.4895       | 0.027*                  |  |

| C5   | 0.14462 (12)  | 0.93777 (12) | -0.32982 (9) | 0.0187 (2)   |
|------|---------------|--------------|--------------|--------------|
| H5A  | 0.1542        | 1.0113       | -0.3061      | 0.022*       |
| C6   | 0.10798 (12)  | 0.80452 (11) | -0.25527 (8) | 0.01738 (19) |
| C7   | 0.08139 (12)  | 0.78028 (11) | -0.13880 (9) | 0.01654 (19) |
| C8   | 0.17578 (12)  | 0.83272 (11) | -0.08525 (8) | 0.01669 (19) |
| H8A  | 0.2581        | 0.8809       | -0.1224      | 0.020*       |
| С9   | 0.14842 (11)  | 0.81386 (11) | 0.02356 (8)  | 0.01554 (18) |
| C10  | 0.02237 (11)  | 0.74476 (11) | 0.07864 (8)  | 0.01598 (19) |
| C11  | -0.07150 (11) | 0.68975 (11) | 0.02521 (9)  | 0.01676 (19) |
| C12  | -0.04140 (12) | 0.70569 (11) | -0.08225 (9) | 0.01702 (19) |
| H12A | -0.1025       | 0.6670       | -0.1165      | 0.020*       |
| C13  | -0.01691 (11) | 0.72807 (11) | 0.19450 (9)  | 0.01693 (19) |
| C14  | 0.07608 (12)  | 0.62893 (12) | 0.28288 (9)  | 0.0188 (2)   |
| H14A | 0.0601        | 0.6290       | 0.3524       | 0.023*       |
| C15  | 0.18306 (12)  | 0.53861 (11) | 0.26616 (9)  | 0.0178 (2)   |
| H15A | 0.2000        | 0.5474       | 0.1945       | 0.021*       |
| C16  | 0.27629 (12)  | 0.42826 (12) | 0.34593 (9)  | 0.0182 (2)   |
| C17  | 0.26488 (13)  | 0.38889 (13) | 0.45849 (9)  | 0.0218 (2)   |
| C18  | 0.35385 (14)  | 0.28272 (14) | 0.53126 (10) | 0.0256 (2)   |
| H18A | 0.3412        | 0.2608       | 0.6054       | 0.031*       |
| C19  | 0.46305 (14)  | 0.20924 (14) | 0.49095 (10) | 0.0279 (3)   |
| H19A | 0.5247        | 0.1377       | 0.5386       | 0.033*       |
| C20  | 0.48077 (14)  | 0.24180 (14) | 0.38016 (10) | 0.0275 (3)   |
| H20A | 0.5533        | 0.1927       | 0.3528       | 0.033*       |
| C21  | 0.38792 (13)  | 0.34881 (13) | 0.31183 (9)  | 0.0221 (2)   |
| C22  | 0.25400 (11)  | 0.86676 (11) | 0.07971 (8)  | 0.01586 (19) |
| C23  | 0.40626 (12)  | 0.82182 (12) | 0.08352 (9)  | 0.0199 (2)   |
| H23A | 0.4414        | 0.7629       | 0.0474       | 0.024*       |
| C24  | 0.50582 (12)  | 0.86360 (13) | 0.14022 (9)  | 0.0224 (2)   |
| H24A | 0.6066        | 0.8328       | 0.1435       | 0.027*       |
| C25  | 0.44924 (12)  | 0.95271 (12) | 0.19155 (9)  | 0.0201 (2)   |
| C26  | 0.30110 (13)  | 1.00312 (12) | 0.18763 (9)  | 0.0202 (2)   |
| H26A | 0.2678        | 1.0650       | 0.2217       | 0.024*       |
| C27  | 0.20311 (12)  | 0.95877 (11) | 0.13136 (9)  | 0.0182 (2)   |
| H27A | 0.1026        | 0.9908       | 0.1281       | 0.022*       |
| C28  | -0.28775 (13) | 0.56257 (13) | 0.03620 (10) | 0.0231 (2)   |
| H28A | -0.3641       | 0.5157       | 0.0877       | 0.035*       |
| H28B | -0.2319       | 0.4955       | 0.0117       | 0.035*       |
| H28C | -0.3334       | 0.6371       | -0.0245      | 0.035*       |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| F1 | 0.0361 (4) | 0.0511 (5) | 0.0166 (3) | -0.0008 (4) | 0.0005 (3)  | -0.0142 (3) |
| F2 | 0.0317 (4) | 0.0454 (5) | 0.0188 (3) | 0.0145 (3)  | -0.0004(3)  | -0.0119 (3) |
| F3 | 0.0370 (4) | 0.0357 (4) | 0.0187 (3) | 0.0152 (3)  | 0.0003 (3)  | -0.0097 (3) |
| F4 | 0.0223 (3) | 0.0393 (4) | 0.0230 (3) | -0.0097 (3) | -0.0061 (3) | -0.0114 (3) |
| O1 | 0.0178 (4) | 0.0265 (4) | 0.0193 (4) | -0.0074 (3) | 0.0010 (3)  | -0.0073 (3) |
| O2 | 0.0168 (4) | 0.0280 (4) | 0.0234 (4) | 0.0035 (3)  | -0.0005 (3) | -0.0108 (3) |
| C1 | 0.0253 (5) | 0.0232 (5) | 0.0213 (5) | -0.0032 (4) | -0.0009 (4) | -0.0099(4)  |
|    |            |            |            |             |             |             |

Acta Cryst. (2012). E68, o1560-o1561

| C2  | 0.0286 (6) | 0.0317 (6) | 0.0230 (5) | -0.0022 (5) | -0.0014 (4) | -0.0160 (5) |
|-----|------------|------------|------------|-------------|-------------|-------------|
| C3  | 0.0204 (5) | 0.0365 (6) | 0.0152 (5) | 0.0014 (4)  | -0.0014 (4) | -0.0105 (4) |
| C4  | 0.0188 (5) | 0.0264 (5) | 0.0177 (5) | 0.0002 (4)  | -0.0017 (4) | -0.0046 (4) |
| C5  | 0.0164 (4) | 0.0209 (5) | 0.0180 (5) | -0.0001 (4) | -0.0020 (4) | -0.0064 (4) |
| C6  | 0.0151 (4) | 0.0207 (5) | 0.0164 (4) | -0.0002 (3) | -0.0016 (3) | -0.0070 (4) |
| C7  | 0.0160 (4) | 0.0169 (4) | 0.0166 (4) | 0.0005 (3)  | -0.0018 (3) | -0.0063 (4) |
| C8  | 0.0144 (4) | 0.0188 (4) | 0.0165 (4) | -0.0007 (3) | -0.0003 (3) | -0.0063 (4) |
| C9  | 0.0125 (4) | 0.0172 (4) | 0.0167 (4) | 0.0013 (3)  | -0.0018 (3) | -0.0063 (4) |
| C10 | 0.0141 (4) | 0.0173 (4) | 0.0156 (4) | 0.0011 (3)  | -0.0019 (3) | -0.0054 (4) |
| C11 | 0.0145 (4) | 0.0170 (4) | 0.0173 (4) | -0.0007 (3) | -0.0008 (3) | -0.0048(4)  |
| C12 | 0.0160 (4) | 0.0179 (4) | 0.0174 (4) | -0.0012 (3) | -0.0023 (3) | -0.0067(4)  |
| C13 | 0.0145 (4) | 0.0187 (4) | 0.0178 (5) | -0.0014 (3) | -0.0007 (3) | -0.0070 (4) |
| C14 | 0.0175 (5) | 0.0228 (5) | 0.0156 (4) | 0.0006 (4)  | -0.0010 (4) | -0.0070 (4) |
| C15 | 0.0167 (4) | 0.0201 (5) | 0.0157 (4) | -0.0007 (4) | -0.0011 (3) | -0.0056 (4) |
| C16 | 0.0161 (4) | 0.0210 (5) | 0.0169 (5) | 0.0000 (4)  | -0.0010 (4) | -0.0067 (4) |
| C17 | 0.0215 (5) | 0.0239 (5) | 0.0191 (5) | 0.0035 (4)  | -0.0005 (4) | -0.0081 (4) |
| C18 | 0.0260 (6) | 0.0292 (6) | 0.0180 (5) | 0.0046 (4)  | -0.0031 (4) | -0.0058 (4) |
| C19 | 0.0242 (6) | 0.0306 (6) | 0.0235 (6) | 0.0067 (5)  | -0.0042 (4) | -0.0053 (5) |
| C20 | 0.0220 (5) | 0.0328 (6) | 0.0239 (6) | 0.0095 (5)  | -0.0010 (4) | -0.0086 (5) |
| C21 | 0.0190 (5) | 0.0283 (5) | 0.0173 (5) | 0.0034 (4)  | -0.0003 (4) | -0.0079 (4) |
| C22 | 0.0130 (4) | 0.0187 (4) | 0.0149 (4) | -0.0010 (3) | -0.0015 (3) | -0.0050 (4) |
| C23 | 0.0145 (4) | 0.0244 (5) | 0.0213 (5) | 0.0008 (4)  | -0.0011 (4) | -0.0094 (4) |
| C24 | 0.0130 (4) | 0.0305 (6) | 0.0222 (5) | -0.0002 (4) | -0.0033 (4) | -0.0082 (4) |
| C25 | 0.0180 (5) | 0.0254 (5) | 0.0158 (4) | -0.0059 (4) | -0.0043 (4) | -0.0050 (4) |
| C26 | 0.0206 (5) | 0.0220 (5) | 0.0192 (5) | -0.0026 (4) | -0.0009 (4) | -0.0087 (4) |
| C27 | 0.0147 (4) | 0.0203 (5) | 0.0194 (5) | 0.0008 (3)  | -0.0024 (3) | -0.0072 (4) |
| C28 | 0.0171 (5) | 0.0268 (5) | 0.0276 (6) | -0.0058 (4) | -0.0004 (4) | -0.0117 (5) |

Geometric parameters (Å, °)

| F1—C3  | 1.3602 (13) | C13—C14  | 1.4756 (15) |
|--------|-------------|----------|-------------|
| F2—C21 | 1.3585 (13) | C14—C15  | 1.3440 (15) |
| F3—C17 | 1.3519 (13) | C14—H14A | 0.9300      |
| F4—C25 | 1.3656 (13) | C15—C16  | 1.4621 (15) |
| 01—C11 | 1.3645 (13) | C15—H15A | 0.9300      |
| O1—C28 | 1.4274 (14) | C16—C17  | 1.3985 (15) |
| O2—C13 | 1.2249 (13) | C16—C21  | 1.4002 (15) |
| C1—C2  | 1.3908 (16) | C17—C18  | 1.3791 (16) |
| C1—C6  | 1.3981 (16) | C18—C19  | 1.3910 (17) |
| C1—H1A | 0.9300      | C18—H18A | 0.9300      |
| С2—С3  | 1.3751 (18) | C19—C20  | 1.3882 (17) |
| C2—H2A | 0.9300      | C19—H19A | 0.9300      |
| C3—C4  | 1.3823 (18) | C20—C21  | 1.3782 (16) |
| C4—C5  | 1.3951 (15) | C20—H20A | 0.9300      |
| C4—H4A | 0.9300      | C22—C27  | 1.3958 (15) |
| С5—С6  | 1.4003 (15) | C22—C23  | 1.4010 (14) |
| С5—Н5А | 0.9300      | C23—C24  | 1.3897 (16) |
| С6—С7  | 1.4850 (15) | C23—H23A | 0.9300      |
| С7—С8  | 1.3939 (15) | C24—C25  | 1.3819 (17) |
| C7—C12 | 1.4034 (15) | C24—H24A | 0.9300      |
|        |             |          |             |

| C8—C9                                   | 1.3990 (14)              | C25—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3805 (16)               |
|-----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| C8—H8A                                  | 0.9300                   | C26—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3912 (15)               |
| C9—C10                                  | 1.3996 (14)              | C26—H26A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                    |
| C9—C22                                  | 1.4888 (15)              | C27—H27A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                    |
| C10—C11                                 | 1.4064 (15)              | C28—H28A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                    |
| C10—C13                                 | 1.5123 (14)              | C28—H28B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                    |
| C11—C12                                 | 1.3921 (15)              | C28—H28C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600                    |
| C12—H12A                                | 0.9300                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| C11—O1—C28                              | 117.58 (9)               | C14—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115.8                     |
| C2—C1—C6                                | 121.10 (11)              | C16—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115.8                     |
| C2—C1—H1A                               | 119.5                    | C17—C16—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113.73 (10)               |
| C6—C1—H1A                               | 119.5                    | C17—C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126.22 (10)               |
| C3—C2—C1                                | 118.01 (11)              | C21—C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.04 (10)               |
| C3—C2—H2A                               | 121.0                    | F3—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.61 (10)               |
| C1—C2—H2A                               | 121.0                    | F3—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.92 (10)               |
| F1—C3—C2                                | 118.31 (11)              | C18—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124.46 (10)               |
| F1—C3—C4                                | 118.56 (11)              | C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.36 (11)               |
| C2—C3—C4                                | 123.13 (11)              | C17—C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.8                     |
| C3—C4—C5                                | 118.34 (11)              | C19—C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.8                     |
| C3—C4—H4A                               | 120.8                    | C20—C19—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.55 (11)               |
| С5—С4—Н4А                               | 120.8                    | C20—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7                     |
| C4-C5-C6                                | 120.35 (11)              | C18—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7                     |
| C4—C5—H5A                               | 119.8                    | $C_{21}$ $-C_{20}$ $-C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.19 (11)               |
| C6-C5-H5A                               | 119.8                    | C21—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.9                     |
| C1 - C6 - C5                            | 119.07 (10)              | C19—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.9                     |
| C1 - C6 - C7                            | 120 38 (10)              | $F_{2}$ $C_{21}$ $C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.95(10)                |
| $C_{5} - C_{6} - C_{7}$                 | 120.55 (10)              | $F_{2}$ $C_{21}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.34 (10)               |
| C8-C7-C12                               | 119.51 (10)              | $C_{20}$ $C_{21}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.70 (11)               |
| C8 - C7 - C6                            | 120 74 (9)               | C27-C22-C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118 94 (10)               |
| C12-C7-C6                               | 119 75 (10)              | C27-C22-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.92 (9)                |
| C7 - C8 - C9                            | 120.89 (10)              | $C^{23}$ $C^{22}$ $C^{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.32(9)                 |
| C7—C8—H8A                               | 119.6                    | $C^{24}$ $C^{23}$ $C^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.12(9)<br>121.32(10)   |
| C9-C8-H8A                               | 119.6                    | C24—C23—H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.3                     |
| C8 - C9 - C10                           | 119.59 (10)              | $C^{22}$ $C^{23}$ $H^{23}$ $H^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.3                     |
| C8 - C9 - C22                           | 119.39 (10)              | $C_{22} = C_{23} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.43 (10)               |
| $C_{10}$ $C_{9}$ $C_{22}$               | 119.71(9)<br>120.71(9)   | $C_{25} = C_{24} = C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.3                     |
| $C_{10} - C_{10} - C_{11}$              | 120.71(9)<br>119 51 (9)  | $C_{23}$ $C_{24}$ $H_{24A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.3                     |
| $C_{2}^{0} - C_{10}^{10} - C_{13}^{13}$ | 117.31(9)<br>121.81(9)   | $F_{4}$ $C_{25}$ $C_{26}$ $C_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117 91 (10)               |
| $C_{11} - C_{10} - C_{13}$              | 121.01 ())               | F4 - C25 - C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118 65 (10)               |
| 01-C11-C12                              | 124 20 (10)              | $C_{26}$ $C_{25}$ $C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.05(10)<br>123.44(11)  |
| 01 - 011 - 012                          | 124.20(10)<br>115.25(0)  | $C_{20} = C_{23} = C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.44(11)<br>118 14 (10) |
| $C_{12}$ $C_{11}$ $C_{10}$              | 113.23(9)<br>120 55 (10) | $C_{25}$ $C_{26}$ $H_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.9                     |
| $C_{11} C_{12} C_{7}$                   | 110.55 (10)              | $C_{23}$ $C_{20}$ $C$ | 120.9                     |
| $C_{11} = C_{12} = C_{12}$              | 119.80 (10)              | $C_2 = C_2 $ | 120.9<br>120.70(10)       |
| C1 - C12 - III2A<br>C7 - C12 - H12A     | 120.1                    | $C_{20} = C_{27} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.70 (10)               |
| $0^{-012}$ $1^{-012}$ $1^{-012}$        | 120.1                    | $C_{20} C_{27} H_{27A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                     |
| 02 - C13 - C14<br>02 - C13 - C10        | 120.22 (10)              | 01 - C28 + H28A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 5                     |
| C14-C13-C10                             | 119 47 (9)               | $01 - C_{28} - H_{28R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                     |
|                                         | エエン・サノ しノノ               | 01 020 - 1120D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.5                     |

| C15—C14—C13     | 122.15 (10)  | H28A—C28—H28B   | 109.5        |
|-----------------|--------------|-----------------|--------------|
| C15—C14—H14A    | 118.9        | O1—C28—H28C     | 109.5        |
| C13—C14—H14A    | 118.9        | H28A—C28—H28C   | 109.5        |
| C14—C15—C16     | 128.48 (10)  | H28B—C28—H28C   | 109.5        |
|                 |              |                 |              |
| C6-C1-C2-C3     | 0.19 (18)    | C11—C10—C13—C14 | 109.02 (11)  |
| C1—C2—C3—F1     | 179.74 (11)  | O2-C13-C14-C15  | 169.89 (11)  |
| C1—C2—C3—C4     | 0.16 (19)    | C10-C13-C14-C15 | -8.99 (16)   |
| F1—C3—C4—C5     | -179.84 (10) | C13—C14—C15—C16 | -175.29 (11) |
| C2—C3—C4—C5     | -0.25 (18)   | C14—C15—C16—C17 | 4.5 (2)      |
| C3—C4—C5—C6     | 0.00 (16)    | C14—C15—C16—C21 | -176.78 (12) |
| C2-C1-C6-C5     | -0.43 (17)   | C21—C16—C17—F3  | -178.53 (11) |
| C2-C1-C6-C7     | 178.74 (10)  | C15—C16—C17—F3  | 0.30 (18)    |
| C4C5C6C1        | 0.33 (16)    | C21—C16—C17—C18 | 0.26 (18)    |
| C4—C5—C6—C7     | -178.83 (10) | C15—C16—C17—C18 | 179.09 (12)  |
| C1—C6—C7—C8     | 137.19 (11)  | F3—C17—C18—C19  | 178.96 (12)  |
| C5—C6—C7—C8     | -43.66 (14)  | C16-C17-C18-C19 | 0.2 (2)      |
| C1—C6—C7—C12    | -43.81 (15)  | C17—C18—C19—C20 | -0.4 (2)     |
| C5—C6—C7—C12    | 135.34 (11)  | C18—C19—C20—C21 | 0.3 (2)      |
| C12—C7—C8—C9    | -0.99 (15)   | C19—C20—C21—F2  | -179.68 (12) |
| C6—C7—C8—C9     | 178.01 (9)   | C19—C20—C21—C16 | 0.2 (2)      |
| C7—C8—C9—C10    | -1.73 (15)   | C17—C16—C21—F2  | 179.42 (11)  |
| C7—C8—C9—C22    | 177.95 (9)   | C15—C16—C21—F2  | 0.51 (17)    |
| C8—C9—C10—C11   | 2.77 (15)    | C17—C16—C21—C20 | -0.45 (18)   |
| C22—C9—C10—C11  | -176.91 (9)  | C15—C16—C21—C20 | -179.36 (12) |
| C8—C9—C10—C13   | -176.84 (9)  | C8—C9—C22—C27   | 125.20 (11)  |
| C22—C9—C10—C13  | 3.48 (15)    | C10-C9-C22-C27  | -55.12 (14)  |
| C28—O1—C11—C12  | -0.06 (15)   | C8—C9—C22—C23   | -56.29 (14)  |
| C28—O1—C11—C10  | -179.63 (9)  | C10—C9—C22—C23  | 123.38 (11)  |
| C9—C10—C11—O1   | 178.46 (9)   | C27—C22—C23—C24 | 1.97 (16)    |
| C13—C10—C11—O1  | -1.92 (14)   | C9—C22—C23—C24  | -176.57 (10) |
| C9-C10-C11-C12  | -1.12 (15)   | C22—C23—C24—C25 | -0.82 (17)   |
| C13—C10—C11—C12 | 178.50 (9)   | C23—C24—C25—F4  | 179.25 (10)  |
| O1—C11—C12—C7   | 178.86 (10)  | C23—C24—C25—C26 | -1.08 (18)   |
| C10-C11-C12-C7  | -1.60 (15)   | F4—C25—C26—C27  | -178.59 (10) |
| C8—C7—C12—C11   | 2.64 (15)    | C24—C25—C26—C27 | 1.74 (17)    |
| C6—C7—C12—C11   | -176.37 (9)  | C25—C26—C27—C22 | -0.51 (16)   |
| C9—C10—C13—O2   | 109.75 (12)  | C23—C22—C27—C26 | -1.27 (16)   |
| C11—C10—C13—O2  | -69.86 (14)  | C9—C22—C27—C26  | 177.25 (10)  |
| C9-C10-C13-C14  | -71.37 (14)  |                 |              |

# Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

| D—H···A                      | <i>D</i> —Н | H··· <i>A</i> | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|------------------------------|-------------|---------------|--------------|-------------------------|
| C2— $H2A$ ···F3 <sup>i</sup> | 0.93        | 2.46          | 3.3655 (18)  | 164                     |
| C8—H8A····F4 <sup>ii</sup>   | 0.93        | 2.45          | 3.3726 (13)  | 170                     |
| C24—H24A···O2 <sup>iii</sup> | 0.93        | 2.57          | 3.4371 (14)  | 155                     |
| C20—H20 $A$ ··· $Cg1^{iv}$   | 0.93        | 2.83          | 3.5082 (14)  | 130                     |

# supplementary materials

| C27—H27 $A$ ···· $Cg2^{v}$                     | 0.93 | 2.68 | 3.4068 (12) | 136 |
|------------------------------------------------|------|------|-------------|-----|
| C28—H28 <i>B</i> ··· <i>Cg</i> 2 <sup>vi</sup> | 0.96 | 2.90 | 3.7990 (15) | 157 |

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) -*x*+1, -*y*+2, -*z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*, -*y*+2, -*z*; (vi) -*x*, -*y*+1, -*z*.